相転移は大別すると準安定状態を持つ第一種相転移 (phase transition of the first kind)」と、それを持たない第二種相転移 (phase transition of the second kind)」に分類される。
これとは別にポール・エーレンフェストの分類法では自由エネルギーの温度あるいは圧力の n 階微分が不連続点を有する場合を「n次相転移」と呼ぶ。例えば、 1階微分が不連続点を有する場合を「一次相転移 (first order transition)」、2階微分が不連続点を有する場合を「二次相転移」と呼ぶ。転移点が一次相転移か二次相転移かの別により「一次相転移点」、「二次相転移点」と呼び分ける場合もある。
熱的現象としては第一種相転移が進行中の一成分系は圧力が一定の場合、系の温度が一定のままでの系外への熱の放出あるいは吸収が見られる。このような機構で生じる熱を転移熱(heat of transition)または潜熱(latent heat)とよぶ。そもそも熱の定義は物体に作用することで温度変化をもたらす物理量であり、一次相転移点以外の状態では熱の作用は温度変化をもたらすのでこの場合を顕熱(sensible heat)とよび、一次相転移点において作用により温度変化を生じない場合を潜熱と呼び分けたことに由来するので、顕熱と潜熱とで物理量である熱として違いがあるわけではない。
Image may be NSFW. Clik here to view.原子核同士がある程度接近すると、原子核同士が引き合う力(核力)が反発する力(クーロン力)を超え、2つの原子が融合することになる。融合のタイプによっては融合の結果放出されるエネルギー量が多いことから水素爆弾などの大量破壊兵器に用いられる。また核融合炉によるエネルギー利用も研究されている。
黒体からの熱などの放射を黒体放射と言う(以前は黒体輻射ともいった)。ある温度の黒体から放射される電磁波のスペクトルは一定である。温度 T において、波長λ の電磁波の黒体放射強度 B (λ) は、
Image may be NSFW. Clik here to view.で表される。これをプランク分布という。プランク分布を全波長領域で積分することで、黒体放射の全エネルギーがT4に比例する(E = σT4,σ:シュテファン=ボルツマン定数)というシュテファン=ボルツマンの法則を得る。また微分して B (λ) が極大となるλ を求めることで、放射強度最大の波長が T に反比例するというウィーンの変位則を得る。