Quantcast
Channel: アンディマンのコスモロジー (宇宙論)
Viewing all articles
Browse latest Browse all 186

天体宇宙物理学への扉を開く

$
0
0

出典:フリー百科事典「ウィキペディア」より引用

ユークリッド空間 その3(終わり)

・ユークリッド空間の点集合論

平行移動、鏡映、回転などの (free) motions 、アフィン変換、射影変換などで安定な点集合論エルランゲン計画

En,Rn, 平行移動群 Tn との同相性など

距離空間の位相, 完備性, 局所コンパクト性etc

曲率や(二次形式orリーマン)計量など

ホモロジーやホモトピーなど

・位相構造

ユークリッド空間は距離空間であるから、距離から誘導される自然な位相を持った位相空間でもある。En 上の距離位相は、ユークリッド位相あるいは通常の位相と呼ばれる。すなわち、ユークリッド空間の部分集合が開集合であるための必要十分条件は、その部分集合に属する各点に対して、それを中心とする適当な大きさの開球体をその部分集合が必ず含むことである。ユークリッド位相は、Rn を(標準位相を備えた)実数直線 R n 個のコピーの直積と見たときの直積位相と同値であることが確かめられる。

ユークリッド空間の位相的性質について、「Enの部分集合は、それがある開集合に同相となるものならばそれ自身が開集合である」というブラウウェルの領域の不変性定理が知られている。またその帰結として、n ≠ m であれば En Em は互いに同相でないことが示せる。これは明白な事実のようであるが、それでいて証明するとなるとそれは容易ではない。

・微分構造・異種空間

n 次元ユークリッド空間は n 次元(位相)多様体の原型的な例であり、可微分多様体の例ともなっている。n 4 でなければ n 次元ユークリッド空間に同相な位相多様体は、可微分構造まで込めて同相(微分同相)である。しかし n = 4 のときはそうならないという驚くべき事実が、1982年にサイモン・ドナルドソンによって証明された。この反例となる(すなわち 4 次元ユークリッド空間と同相だが微分同相でない)多様体は異種4次元空間 (exotic 4-spaces) と呼ばれる。

・一般化

現代数学において、ユークリッド空間はほかのより複雑な幾何学的対象の原型を成している。例えば、可微分多様体は局所的にユークリッド空間に微分同相であるようなハウスドルフ位相空間である。微分同相写像は距離や角度といったものは考慮しないので、ユークリッド幾何学で重要な役割であったこれらの概念を可分多様体の上で考えることは一般にはできない。それでも、多様体の接空間上に滑らかに変化する内積を入れることはできて、そのようなものをリーマン多様体と呼ぶ。表現を変えれば、リーマン多様体はユークリッド空間を変形し、貼り合わせて構成される空間である。そのような空間では距離や角度の概念を取り扱うことができるが、その振る舞いは曲率を伴う非ユークリッド的なものとなる。最も単純なリーマン多様体は、一定の内積を備えた Rn で、これは本質的に n-次元ユークリッド空間そのものと同一視される。

イメージ 1内積が負の値をとりうるものとして得られるユークリッド空間の類似物は擬ユークリッド空間と呼ばれ、そのような空間から構成した滑らかな多様体は擬リーマン多様体と呼ばれる。これらの空間の最もよく知られた応用はおそらく相対論で、そこでは質料を持たない空でない時空はミンコフスキー空間と呼ばれる平坦擬ユークリッド空間によって表される。また、質料を持つ時空は擬ユークリッドでない擬リーマン多様体を成し、重力はその多様体の曲率に対応する。

相対論の主題としての我々の宇宙はユークリッド的でない。これは天文学と宇宙論の理論的考察において重要であり、また全地球測位システムや航空管制などの実務的な問題でも重要になる。それでも、宇宙のユークリッド的なモデルは、多くの実用上の問題において十分な正確さを持って解決するために利用することができる。

Rをピタゴラス的な順序体に取り替えても類似の距離が定義できて、運動群などの構造が乗る。

 

Viewing all articles
Browse latest Browse all 186

Trending Articles