Quantcast
Channel: アンディマンのコスモロジー (宇宙論)
Viewing all articles
Browse latest Browse all 186

天体宇宙物理学への扉を開く

$
0
0
出典:フリー百科事典「ウィキペディア」より引用
一般相対性理論 その7
・アインシュタイン方程式とその特徴
一般相対性理論の基本方程式は、
イメージ 1

と表され、アインシュタイン方程式と呼ばれる。ここでGμνはアインシュタインテンソル、gμνは計量テンソル、Λは宇宙項、Tμνはエネルギー・運動量テンソルである。非相対論的極限でニュートンの重力理論に収束することから、右辺の比例係数κ(アインシュタインの定数)は、

イメージ 2



となる。G は万有引力定数、 c は光速である。4次元空間を考えれば、テンソルは対称なので、アインシュタイン方程式は、10本の方程式からなる。
アインシュタイン方程式の左辺は時空の曲率を表し、右辺は物質分布を表す。右辺の物質分布の項により時空が曲率を持ち、その曲率の影響で次の瞬間の物質分布が定まる、という構造である。真空の時空であれば、右辺をゼロとすればよい。例えば、重力以外の力を考えないと、次のようになる。
右辺のエネルギー運動量テンソルが増加の場合(アインシュタインの特殊相対論によるとエネルギーと質量は等価であるから、エネルギー運動量テンソルの増加は質量の増加を意味する)、左辺も増加しなければならない。これは時空の曲率が増加することを意味する。アインシュタインの解釈によると重力とは時空の湾曲によるものであったから、曲率の増加は重力の増大を表す。右辺のエネルギー運動量テンソルの増大は質量が増大する事を表し、この方程式によると、それは左辺の時空の曲率、つまり重力がさらに増大することを意味する。
すなわち、重力は非線形で、重力自身は自己増大してゆく。通常の恒星のモデルでは、核融合による、生じる光(電磁波)の輻射圧とガスによる圧力が、重力と釣り合うように恒星の半径が決まる。星が燃え尽きて支える力がなくなると、重力崩壊し、電子の縮退圧で支えられる白色矮星か、中性子の縮退圧で支えられる中性子星、あるいは、ブラックホールになることが予測される。
アインシュタイン方程式の数学的な特徴は、次のような点にある。
座標変換に対し、共変的であるので、「時間座標1+空間座標3」のみではなく、「光の進行方向2+空間座標2」といった分解表現も可能である。
非線形の2階の偏微分方程式(楕円型偏微分方程式および双曲型偏微分方程式)である。
時空構造を論じていながら、時空全体の大域的構造やトポロジーを仮定しない。
得られる解には、特異点が存在する。(特異点定理)
・アインシュタイン方程式の厳密解
アインシュタイン方程式自身に何ら近似することなく得られる解析解のことを厳密解という。良く知られている厳密解に、次のものがある。
シュヴァルツシルト解 
カール・シュヴァルツシルトが1916年に発表した解。真空で球対称を仮定した解で、ブラックホールを表す最も単純な解。
カー解 
ロイ・カーが1962年発表した解。真空で軸対称時空を仮定した解で、回転するブラックホールを表す最も単純な解。
ド・ジッター解 
ウィレム・ド・ジッターが1917年に発表した解。真空で宇宙項がある場合の膨張宇宙解。ド・ジッター宇宙を表す。
フリードマン・ロバートソン・ウォーカー解 
アレクサンドル・フリードマン、ハワード・ロバートソン、アーサー・ウォーカーが1922年に発表した解。時空の球対称性を仮定し、物質分布を一様等方な流体近似した解で、ビッグバン膨張宇宙を表す解。
ゲーデル解 
クルト・ゲーデルが1949年に発表した解。物質分布を規定するエネルギー・運動量テンソルを、回転する一様なダスト粒子として仮定し、ゼロでない宇宙項を仮定した解で、ゲーデルの回転宇宙を表す解。
現在でも、新しい解(解析解)を発見すれば、発見者の名前がつく。ただし、同じ物理的な時空であっても、異なる座標表現を用いて、異なる解のように表現されることがあるので、注意することが必要である。


Viewing all articles
Browse latest Browse all 186

Trending Articles