出典:フリー百科事典「ウィキペディア」より引用
一般相対性理論 その4
・物理学としての位置づけ
-万有引力の法則との関係
アインシュタイン方程式は微分方程式として与えられているため局所的な理論ではあるが、ちょうど電磁気学における局所的なマクスウェル方程式から大域的なクーロンの法則を導くことができるように、アインシュタイン方程式は静的なニュートンの万有引力の法則を包含している。万有引力の法則との主な違いは次の3点である。
重力は瞬時に伝わるのではなく光と同じ速さで伝わる。
重力から重力が発生する(非線形相互作用)。
質量を持つ物体の加速運動により重力波が放射される。
ここで、3.は荷電粒子が加速運動することにより電磁波が放射されることと類似している。これは、万有引力の法則やクーロンの法則に、運動する対象の自己の重力や電荷の効果を取り入れていることに対応している。
-特殊相対性理論との関係
特殊相対性理論が、“加速している場合や重力が加わった場合を含まない特殊な状態”における時空の性質を述べた法則であるのに対して、一般相対性理論は、“加速している場合や重力が加わった場合を含めた一般的な状態”における時空の性質を述べた法則であり、等速直線運動する慣性系のみしか扱えなかった特殊相対性理論を、加速度系も扱えるように拡張した理論であると言える。
対称性の視点からは、まず、特殊相対性理論は系のローレンツ変換に対する対称性により特徴づけられ、非相対論的極限によりニュートン力学の有するガリレイ変換が導かれる。一方、一般相対性理論は一般座標変換(diffeomorphism)に対する対称性により特徴づけられるアインシュタイン方程式を基礎方程式とする理論である。アインシュタイン方程式の有する一般座標変換に対する共変性は重力を小さくする極限のもとでローレンツ変換に対する共変性に帰し、一般相対性理論は特殊相対性理論を包含する。当然、古典力学も包含している。
-量子力学との関係
量子論は一般相対性理論と同様に物理学の基本的な理論の一つであると考えられている。しかし、一般相対性理論と量子論を整合させた理論(量子重力理論)はいまだに完成していない。現在、人類の知っているあらゆる物理法則は全て場の量子論と一般相対性理論という二つの理論から導くことができる。そのため、その二つを導くことのできる量子重力理論は万物の理論とも呼ばれている。
量子重力理論は、高エネルギーでかつ時空が大きく曲がっている系を適切に記述できるため、場の量子論と一般相対性理論では適切に議論することのできない宇宙創世初期の状態についても予測できると考えられる。
量子重力理論の有力な候補としては、超弦理論がある。
・曲がった時空上の場の理論(Quantum fieldtheory in curved spacetime)
一般に場の量子論においては平坦なミンコフスキー時空における粒子を扱うが、重力の効果を近似的(半古典的)に背景時空(曲がった時空)として導入することにより場の量子論に曲がった時空の効果を近似的に取り入れたものである。
重力子の影響を背景時空として近似しているため、強い重力場のもとでは時空を完全に量子化したような量子重力理論に修正されるべきである。欠点としては、時空が静的なものであるため完全には相対論的ではない。
ホーキング放射はこの理論のもとで予測された。