出典:フリー百科事典「ウィキペディア」より引用
一般相対性理論 その3
・歴史
-一般相対性理論が成立するまで
1905年に特殊相対性理論を発表したアインシュタインは、特殊相対性理論を加速度運動を含めたものに拡張する理論の構築に取り掛かった。1907年に、アインシュタイン自身が「人生で最も幸福な考え(the happiest thought of my life)」と振り返る「重力によって生じる加速度は観測する座標系によって局所的にキャンセルすることができる」というアイディアを得る。光の進み方と重力に関する論文を1911年に出版した後、1912年からは、重力場を時空の幾何学として取り扱う方法を模索した。このときにアインシュタインにリーマン幾何学の存在を教えたのが、数学者マルセル・グロスマンであった。ただし、このときグロスマンは、「物理学者が深入りする問題ではない」と助言したとも伝えられている。1915年-16年には、これらの考えが1組の微分方程式(アインシュタイン方程式)としてまとめられた。
この時期にアインシュタインが発表した一般相対性理論に関する論文は、以下の通り。
1911年論文『光の伝播に対する重力の影響』(Annalen der Physik (Germany), 35, 898-908)
1914年論文『一般相対性理論および重力論の草案』(ZS. f. Math. u. Phys., 62, 225-261)
1915年論文『水星の近日点の移動に対する一般相対性理論による説明』(S.B. Preuss. Akad. Wiss., 831-839)
1916年論文『一般相対性理論の基礎』(Annalen der Physik (Germany), 49, 769-822)
1916年論文『Hamiltonの原理と一般相対性理論』(S.B. Preuss. Akad. Wiss., 1111-1116)
-一般相対性理論の発表後
アインシュタイン方程式の発表後は、その方程式を解くことが研究の課題となった。
1916年にカール・シュヴァルツシルトが、アインシュタイン方程式を球対称・真空の条件のもとに解き、今日ブラックホールと呼ばれる時空を表すシュヴァルツシルト解を発見した。アインシュタイン自身は、自ら導いた方程式から、重力波の概念を提案したり、宇宙全体に適用すると動的な宇宙が得られてしまうことから、宇宙項を新たに方程式に加えるなどの提案を行っている。
1917年論文『一般相対性理論についての宇宙論的考察』(S.B. Preuss. Akad. Wiss., 142-152)
1918年論文『重力波について』(S.B.Preuss. Akad. Wiss., 154-167)
1919年にアーサー・エディントンが皆既日食を利用して、一般相対性理論により予測された太陽近傍での光の曲がりを確認したことにより、理論の正しさが認められ、世間への認知が一気に広まった。
1922年には、宇宙膨張を示唆するフリードマン・ロバートソンモデルが提案されるが、アインシュタイン自身は、宇宙が定常であると信じていたので、現実的な宇宙の姿であるとは受け入れようとはしなかった。
しかし、1929年には、エドウィン・ハッブルが、遠方の銀河の赤方偏移より、宇宙が膨張していることを示し、これにより、一般相対性理論の予測する時空の描像が正しいことが判明した。後にアインシュタインは宇宙項の導入を取り下げ、「生涯最大の失敗だった(the biggest blunder in mycareer)」とジョージ・ガモフに語ったという。
1931年、スブラマニアン・チャンドラセカールは、白色矮星の質量に上限があることを理論的計算によって示した。今日、チャンドラセカール限界として知られる式は、万有引力定数、プランク定数、光速の3つの基本定数を含み、古典物理・量子物理双方の成果を集大成したものでもある。チャンドラセカールは、「星の構造と進化にとって重要な物理的過程の理論的研究」の功績でノーベル物理学賞(1983年)を受賞した。
1939年、ロバート・オッペンハイマーとゲオルグ・ヴォルコフは、中性子星形成のメカニズムを考察する過程で、重力崩壊現象が起きることを予測した。
その後しばらく、一般相対性理論は、「数学的産物」として実質的な物理研究の主流からは外れている。重力波は果たして物理的な実体であるのかどうかという論争や、アインシュタイン方程式の厳密解の分類方法などの研究がしばらく続くが、1960年代のパルサーの発見やブラックホール候補天体の発見、そしてロイ・カーによる回転ブラックホール解(カー解)の発見を契機に、一般相対性理論は天文学の表舞台に登場する。同時期に、スティーヴン・ホーキングとロジャー・ペンローズが特異点定理を発表し、数学的・物理的に進展を始めると共に、ジョン・ホイーラーらが、古典重力・量子重力双方に物理的な描像を次々と提出し始めた。ワームホール(1957年)やブラックホール(1967年)という名前を命名したのは、ホイーラーである。
1974年、ジョゼフ・テイラーとラッセル・ハルスは、連星パルサー PSR B1913+16 を発見した。連星の自転周期とパルスの放射周期を精密に観測することによって、重力波により、連星系からエネルギーが徐々に運び去られていることを示し、重力波の存在を間接的に証明した。この業績により、2人は「重力研究の新しい可能性を開いた新型連星パルサーの発見」としてノーベル物理学賞(1993年)を受賞した。
現在は、重力波の直接観測を目指して、世界各地でレーザー干渉計が稼働している。観測のターゲットとしているのは、中性子星連星やブラックホール連星の合体で生じる重力波などで、波形の予測のための理論や数値シミュレーションが研究の重要なテーマになっている。
また、宇宙論研究では、ビッグバン宇宙モデル(1947年)が有力とされているが、さらにその初期宇宙の膨張則を修正したインフレーション宇宙モデル(1981年)も正しいことが、2006年のWMAP衛星による宇宙背景輻射の観測により決定的になったと考える人も多い。最近は、高次元宇宙モデルが脚光を浴びているが、これらの宇宙モデルは、いずれも一般相対性理論を基礎にして議論される。
アインシュタイン以後、一般相対性理論以外の重力理論も、数多く提案されているが、現在までにほとんどが観測的に棄却されている。実質的に対抗馬となるのは、カール・ブランスとロバート・H・ディッケによるブランス・ディッケ重力理論であるが、現在の観測では、ブランス・ディッケ理論のパラメーターは、ほとんど一般相対性理論に近づけなくてはならず、両者を区別することが難しいほどである。量子論と一般相対論の統一という物理学の試みは未だ進行中であるものの、一般相対性理論を積極的に否定する観測事実・実験事実は一つもない。他に提案されたどの重力理論よりも一般相対性理論は単純な形をしていることから、重力は一般相対性理論で記述される、と考えるのが現代の物理学である。