出典:フリー百科事典「ウィキペディア」より引用
宇宙の年表 その2
-初期宇宙
宇宙のインフレーションの後、宇宙はクォークグルーオンプラズマで満たされる。この時点から後である初期宇宙の物理学は比較的よく理解されており、また推測も減ってくる。
-超対称性の破れ
超対称性があるとすれば電弱超対称性の基準である1TeV程度の低いエネルギーで超対称性は破れ、粒子と超対称性パートナーの質量は等しくなくなると考えられる。これにより、既知の粒子の超対称性パートナーはなぜ観察されないのかが説明される。
-クォーク時代
宇宙誕生から10-12から10-6秒後
電弱時代の終わりに電弱超対称性が破れると、ヒッグス粒子は真空期待値を獲得し、あらゆる粒子はヒッグス機構により質量を獲得すると考えられる。重力相互作用、電磁相互作用、弱い相互作用、強い相互作用からなる基本相互作用は、現在のように分離するものの、宇宙の温度は高いためクォークの結合によるハドロンの生成は生じない。
-ハドロン時代
宇宙誕生から10-6から1秒後
宇宙を構成するクォークグルーオンプラズマが冷えることにより、陽子、中性子といったバリオンからなるハドロンが形成される(クォーク・ハドロン相転移を参照してください)。宇宙誕生からおおよそ0.1秒後、ニュートリノは分離して時空を自由に移動するようになる。この宇宙ニュートリノ背景は、詳細は不明であるが後に放射される宇宙マイクロ波背景に似ている。
-レプトン時代
宇宙誕生から1秒から3分後
ハドロンと反ハドロンはハドロン時代の終わりに対消滅し、宇宙の質量はレプトンと反レプトンが占めるようになる。宇宙誕生からおおよそ3秒後宇宙の温度は、レプトンと反レプトンの新たなる対はもう作られず、レプトンと反レプトンのほとんどが対消滅し、レプトンがわずかに残る。
-光子時代
宇宙誕生から3分から38万年後
ほとんどのレプトンと反レプトンはレプトン時代の終わりに対消滅し、宇宙のエネルギーは光子に支配される。この光子は荷電した陽子、電子、原子核と干渉し、この状態は30万年続く。
-原子核合成
宇宙誕生から3分から20分後
光子時代、宇宙の温度は原子核が生成されるまでに低下する。(水素イオンである)陽子と中性子は核融合により結合し、原子核を生成する。核合成は、宇宙の温度と密度が核融合を継続できない程度まで下がるまでのおよそ17分で終わる。この時代、中性水素(1H)の全質量はヘリウム4(4He)の全質量3倍であり、その他の核種の量はわずかである。
-物質優勢
宇宙誕生から7万年後
この時代、非相対的物質(原子核)と相対的放射(光子)の密度は等しい。(重力と圧効果の競合から)生成可能な最小の構造を決定するジーンズ長(Jeans length)が小さくなりはじめ、それにより放射自由ストリーミングが一掃され、摂動の振幅が大きくなり始める。
-再結合
WMAPのデータは宇宙マイクロ波背景放射にゆらぎがあることを示している。実際の揺らぎは図に示されているよりも階調性に富んでいる。
宇宙誕生から24万年から31万年後
水素とヘリウムの原子核が電子と結合して原子が形成され、また宇宙の密度は低下する。再結合には分離が生じ、光子は物質に干渉されることなく伝播できるようになる。これにより光子は宇宙マイクロ波背景を形成し、光子時代の宇宙が現代でも観測できる。
-暗黒時代
分離が生じるまで、宇宙の光子のほとんどは光子バリオン流動体の電子や陽子と相互作用している。宇宙は不透明で「霧がかって」いる。光といっても私たちが望遠鏡でのぞいて観測できるような光でない。宇宙におけるバリオン様の物質はイオン化プラズマから構成されていたが、再結合期に自由電子を獲得すると電気的に中性となった。それにより光子は束縛を解かれ、宇宙マイクロ波背景を形成した。光子が(分離され)自由になると、宇宙は透明になった。
この時代の放射線は中性水素(1H)の放射する21cm線のみである。現在、このかすかな放射を検出する研究が行われているが、これは、初期宇宙の解明において宇宙マイクロ波背景放射よりも多くの情報を含んでいると考えられている。