出典:フリー百科事典「ウィキペディア」より引用
現代宇宙論 その2(終わり)
・大規模構造の形成・進化
宇宙で最も大きな、また最も初期に存在した構造(クエーサー、銀河、銀河団、超銀河団)の形成と進化について理解する研究は、宇宙論の主要な目的の1つである。現在、宇宙論に関わる研究者は階層的構造形成モデルを標準モデルと考え研究を行なっている。これは宇宙に存在する構造はより小さな天体から作られ、そこから小質量の構造が衝突・合体を繰り返すことで、銀河団・超銀河団のような大質量の構造が形成されたとするモデルである。この様に小質量の構造から構造形成が進むシナリオはボトムアップ・シナリオと呼ばれている。超銀河団のような最も大きな構造は、ビリアル平衡に達しておらず、現在でも進化していると考えられている。宇宙の構造を研究する最も単純な方法は、目に見える銀河をサーベイして宇宙における銀河の3次元分布を構築し、物質分布のパワースペクトルを求めることである。このようなアプローチの実例として、スローン・デジタル・スカイサーベイや2dF銀河赤方偏移サーベイなどがある。
このような構造形成を理解するための重要な道具として計算機によるシミュレーションがある。宇宙論研究者は数値シミュレーションを用いて、宇宙で物質が重力で凝集し、フィラメントや超銀河団、ボイドといった構造を作る過程を研究している。ほとんどのシミュレーションではバリオンでない冷たいダークマターのみを用いている。この仮定は宇宙の最も大きなスケールでの振る舞いを理解するためには十分なものである。なぜなら我々の宇宙には目に見えるバリオン物質よりもはるかに多くのダークマターが存在するためである。現在ではバリオンも計算に含み、個々の銀河の形成を研究するより高度なシミュレーションも始まっている。宇宙論研究者はこのようなシミュレーションによって、計算結果が銀河のサーベイ観測と一致するか、また不一致がある場合にはその原因を理解できるかどうかを調べている。
またこれ以外にも、遠方の宇宙の物質分布を測定したり再電離の時期を検出するための補完的手法がある。例として以下のようなものがある。
ライマンアルファの森と呼ばれる、遠方のクエーサーの光に含まれる銀河間ガス雲の吸収線を測定することで、初期宇宙の中性水素原子の分布を測定することができる。
中性水素原子の21cm線の吸収線の測定も宇宙論の高精度のテストとして用いることができる。
ダークマターの重力レンズ効果によって遠方天体の画像が歪む弱い重力レンズ (weak lensing) も研究に用いることができる。
このような手法は、最初のクエーサーがいつ生まれたかといった問題を解く手掛かりとなる可能性がある。
・ダークマター
ビッグバン元素合成や宇宙マイクロ波背景放射、構造形成の研究によって得られる証拠から、我々の宇宙の質量の約25%は非バリオンのダークマターで、目に見えるバリオン物質は約4%に過ぎないことが分かっている。ダークマターの重力効果はよく理解されており、ダークマターは銀河を取り巻くハロー状に存在し、低温(相対論的速度を持たない)で、放射を出さない物質のように振舞う。ダークマターは実験室ではいまだに検出されておらず、その素粒子物理学的性質は全く分かっていない。しかしダークマターの候補は数多く挙げられており、その例としては安定な超対称性粒子、WIMP、アクシオン、MACHOなどがある。また、重力が弱い場合の重力相互作用の式自体を修正する修正ニュートン力学 (MOND) やブレイン宇宙論でダークマターを説明しようとする研究者もいる。
また、活動銀河中心核や大質量ブラックホールなどの銀河中心の物理学からダークマターの正体に関する手掛かりが得られる可能性もある。
・ダークエネルギー
宇宙の曲率(Shape of the Universe)が平坦であるとすると、宇宙のエネルギー密度には25%のダークマターと4%のバリオンに加えて71%の別の成分が存在しなければならない。この成分をダークエネルギーと呼ぶ。ダークエネルギーの存在がビッグバン元素合成や宇宙マイクロ波背景放射の観測結果と矛盾しないためには、ダークエネルギーはバリオンやダークマターとは異なり、ハロー状に集積しない必要がある。ダークエネルギーの存在については強い観測的証拠がある。すなわち、宇宙の全質量は既に分かっており、また宇宙の曲率は平坦であることが測定から判明しているが、天体として集合している分の質量を精密に測定した結果、その質量は宇宙を平坦にするには少なすぎることが分かっている。ダークエネルギーの存在は1999年になって、現在の宇宙が(速さは異なるものの)インフレーション期と同様の加速膨張をしていることが観測的に示されたことでさらに強まった。
しかし、ダークエネルギーの性質については、そのエネルギー密度や集積しないという性質以外には何も分かっていない。量子場理論からは宇宙定数がダークエネルギーとよく似た振る舞いをすることが予言されているが、その大きさは実際のダークエネルギーより約120桁も大きい。スティーブン・ワインバーグや多くのひも理論研究者は、この事実を人間原理の証拠として取り上げてきた。彼らは、宇宙定数がこのように小さいのは、宇宙定数が大きな宇宙には生命(や宇宙を観測する物理学者)が存在できないからである、としている。しかし多くの人々はこの説明はダークエネルギーの説明としては不足であることを指摘している。ダークエネルギーに関する別の説明としては、クインテセンスや大きなスケールでの重力相互作用の修正などがある。これらのモデルが記述するダークエネルギーの宇宙論的効果はダークエネルギーの状態方程式で与えられ、理論ごとに異なる状態方程式に従う。ダークエネルギーの正体は宇宙論における最も困難な問題の一つである。
ダークエネルギーについての理解が進めば、宇宙の終焉がどうなるかという問題にも答が得られる可能性がある。宇宙の歴史において、ダークエネルギーによる現在の加速膨張は、超銀河団よりも大きな構造が作られることを妨げていると考えられる。この加速膨張が将来も続くかどうかは分かっていない。ダークエネルギーが時間的に増加して加速膨張の度合が大きくなればやがてビッグリップを迎えるかもしれないし、あるいは時間とともに減少すれば最終的に宇宙は収縮に転じるかもしれない。