出典:フリー百科事典「ウィキペディア」より引用
経路積分
経路積分は、リチャード・P・ファインマンが考案した量子力学の理論手法。ファインマンの経路積分とも呼ばれる。
・概要
t0 で同時に A 点を出発した粒子が、別のt1 で同時に B 点に到達する無数の経路のうちの 3 つを示している。
古典力学(古典系)では、ある質点の運動の様子(運動の経路)は初期状態を決めてしまえば後は運動方程式を解くことによって一意的に定まる。一方、量子系では量子的な不確定さ(量子ゆらぎ)が存在するため、古典系のような一意的な経路の決定はできない。
量子系で素粒子などの運動の様子を求める方法はいくつか存在するが、その一つとして経路積分による方法がある。
経路積分の発想では、始点と終点を結ぶ経路は無数にかつ大域的に分布している。それら無数の経路の合成(計算的な意味での合成)が求める結果となる。
経路積分法によって求めた測定値の確率分布は、通常の演算子形式で求めた確率分布と一致する。よって演算子形式と経路積分法は等価な理論である。
演算子形式(シュレーディンガーによる波動力学やハイゼンベルクの行列力学)では、系の時間発展は運動方程式(例えばシュレーディンガー方程式)を解くことで求まるが、経路積分では運動の経路に着目して、経路全体に対する大域的な視点で量子力学上の問題を扱う。ファインマンは、ポール・ディラックの論文にあった「時刻 t と t + Δt(Δt は微小とする)の2 状態間の遷移の振幅が、当該する系のラグランジアンの指数関数に対応する」という記述に着想を得て、この手法を考え出した。ファインマン自身は、この手法を使って液体ヘリウムの極低温でのロトンの励起の問題などを理論的に扱った。
・発想
ファインマンはディラックの著書中の
は量子力学の<qtb | qta>に対応する、という指摘に興味をそそられたと言われている。
具体的な経路積分の発想は、二重スリット実験と関連する。二重スリット実験ではスリットの数は2つであるが、これを無限個に拡張した考え方が経路積分である。
スリットの数が2つなら、経路は2つである。スリットの数が無限個なら、経路の数は無限個である。スリットの数が無限個になるという状況は、スリットの刻まれた衝立が存在しない空間、つまり障害物のない空間を意味する。従って、真空中では経路が無限個であると考えられる。
そのアイデアを数式で定式化したのがファインマンである。
・経路の干渉
二重スリット実験のように、少し条件が複雑になれば最終的な結論は変化し、古典力学の結論と一致するとは限らなくなる。
二重スリット実験ではスリットが2つあり、途中点が2つある。古典力学では単に経路の足し算があるだけで、ピークが2つ観測されるはずであるが、これは実験事実と異なる。一方、経路積分では経路の干渉を計算すると、縞模様の干渉縞ができる(これは、実験事実と一致する)。二重スリット実験の結果(干渉縞)は古典力学の理論では解釈できないが、経路積分の手法で考えれば妥当な説明を得ることができる。