Quantcast
Channel: アンディマンのコスモロジー (宇宙論)
Viewing all articles
Browse latest Browse all 186

天体宇宙物理学への扉を開く

$
0
0
出典:フリー百科事典「ウィキペディア」より引用
相転移 その3(終わり)
・物理学的性質
一次相転移点の前後では,エントロピーやモル比熱などが不連続である。そして、前後の化学ポテンシャルμ1, μ2とは一致し、相転移の状態にある2つの相にはクラウジウス-クラペイロンの式が成立する。
第一種相転移は準安定状態を持つので固体表面や空間に浮遊する吸湿性の微小粒子やイオンなどの刺激するものが存在しないことが原因で過熱状態や過冷却状態のように転移点を越えても相転移を生じない場合がある。すなわち電子レンジで過熱した水の突沸や、放射線検出器の霧箱・泡箱の原理はこの第一種相転移の準安定状態に由来する。
物性としての蒸発のし易さ、し難さを「揮発性」・「不揮発性」という。液体の表面張力に打ち勝つ熱運動エネルギーを持つ分子は蒸発することができる。言い換えると、蒸発する分子は液体表面への付着についての仕事関数を超える力学エネルギーをもっている。したがって蒸発は液体の温度が高かったり、表面張力が低かったりするほど早く進行する。
また、理想気体あるいは理想液体では圧力に依存してその振る舞いを変えることはないが、実際の物質の場合には高圧になると気相と液相の振る舞いに相違がなくなる。その限界の転移点を「臨界点」と呼ぶ。その臨界点を超えた相の状態を超臨界状態と呼ぶ。
・転移熱
熱的現象としては第一種相転移が進行中の一成分系は圧力が一定の場合、系の温度が一定のままでの系外への熱の放出あるいは吸収が見られる。このような機構で生じる熱を転移熱(heat of transition)または潜熱(latent heat)とよぶ。そもそも熱の定義は物体に作用することで温度変化をもたらす物理量であり、一次相転移点以外の状態では熱の作用は温度変化をもたらすのでこの場合を顕熱(sensible heat)とよび、一次相転移点において作用により温度変化を生じない場合を潜熱と呼び分けたことに由来するので、顕熱と潜熱とで物理量である熱として違いがあるわけではない。
相転移前後を状態1、状態2とした場合、それぞれの相の生成エンタルピー H1, H2の総量の差分だけ、転移熱が発生する。
転移熱の単位は質量あたりの熱量 (J/g) または物質量あたりの熱量 (J/mol) で示される。例えば、水の融解熱は 333.5 J/g、気化熱は 2256.7 J/g である。
次に転移熱に該当する熱現象を次に示す。
蒸発熱(気化熱、凝縮熱) - 気相・液相間の第一種相転移
融解熱(凝固熱)- 液相・固相間の第一種相転移
・第二種相転移
代表的な第二種相転移である物理現象としては、構造相転移、磁気相転移、常伝導から超伝導状態への転移、液体ヘリウムの超流動状態などが挙げられる。一般に第二種相転移はある秩序変数が秩序無秩序へと転移する現象である。秩序変数としては結晶内の原子配列の規則化や磁性体の磁気的秩序等、多岐に渡る。
二次あるいは高次の相転移では化学ポテンシャルの一次導関数も連続である為、転移熱は発生せず、比体積の不連続点も発生しない。
一方、二次相転移では、化学ポテンシャルの二次導関数等は不連続で比熱や磁化率が転移点で不連続性を示す。そのほかにも第二種相転移点付近では物理量の異常性が現れ、それらは臨界現象と総称される。たとえば、比熱が第二種相転移点付近でギリシャ文字のλ の形のグラフを示して発散するケースはラムダ転移と呼ばれる。
 

Viewing all articles
Browse latest Browse all 186

Trending Articles